
01

Audit Report
June, 2021

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit 01

02

03

04

07

08

Techniques and Methods

Issue Categories

Issues Found – Code Review/Manual Testing

Summary

Disclaimer

050401

The scope of this audit was to analyse BMON and BMONSeedAndPreSale
smart contract’s codebase for quality, security, and correctness.

Code link - https://drive.google.com/file/
d/1lB5WyaTa9jDQcBcfCWOndxA-H9StqImD/view

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Scope of Audit

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC20 transfer() does not return boolean

ERC20 approve() race

Dangerous strict equalities

Tautology or contradiction

Return values of low-level

calls Missing Zero Address

Validation Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends Using SHA3

Using suicide

Using throw

Using inline assembly

https://drive.google.com/file/d/1lB5WyaTa9jDQcBcfCWOndxA-H9StqImD/view

0502

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step we have analyzed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.
SmartCheck.

Static Analysis
Static Analysis of Smart Contracts was done to identify contract
vulnerabilities. In this step a series of automated tools are used to test
security of smart contracts.

Code Review / Manual Analysis
Manual Analysis or review of code was done to identify new vulnerability
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analyzed, their logic was checked and compared with
the one described in the whitepaper. Besides, the results of automated
analysis were manually verified.

Gas Consumption
In this step we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed and
possibilities of optimization of code to reduce gas consumption.

0203

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Ganache, Solhint, Mythril, Slither,
SmartCheck.

Low level severity issues

Informational

Medium level severity issues

High severity issues

Issue Categories

Low level severity issues can cause minor impact and or are just warnings
that can remain unfixed for now. It would be better to fix these issues at
some point in the future.

These are severity four issues which indicate an improvement request, a
general question, a cosmetic or documentation error, or a request for
information. There is low-to-no impact.

The issues marked as medium severity usually arise because of errors and
deficiencies in the smart contract code. Issues on this level could potentially
bring problems and they should still be fixed.

A high severity issue or vulnerability means that your smart contract can be
exploited. Issues on this level are critical to the smart contract’s
performance or functionality and we recommend these issues to be fixed
before moving to a live environment.

Every issue in this report has been assigned with a severity level. There
are four levels of severity and each of them has been explained below.

0404

Number of issues per severity

Open

Type High

Closed

Low

3 2

1 0

00

00

Medium Informational

Issues Found – Code Review / Manual Testing

High severity issues

No issues were found.

Medium severity issues

[283-312]Losing tokenAmount due to Multiply After Divide
TestCase
User A want to buy some tokens with implementation
as [Consider msg.value = 1ether]

tokenAmount = (msg.value / SEED_PRICE) * 10**18;
The resulting tokenAmount will be 35335000000000000000000

Consider, the implementation as
tokenAmount = (msg.value * 10**18) / SEED_PRICE;
and the resulting tokenAmount will be 35335689045936395759717

So a user is losing 689045936395759717 tokenAmount while calculation

Multiple pragma directives have been found
Use a single solidity compiler

Status: Fixed

1.

1.

Low level severity issues

Status: Open

0505

Missing Zero Address Validation

[#L104-111] function transfer(): Missing zero address check for address
receiver
[#L104-111] function approve(): Missing zero address check for address
delegate
[#L148-151] function allowBuyingBoosters(): Missing zero address check
for address bmonc
[#L153-155] function setSeedAndPresale(): Missing zero address check
for address seedAndPresale_
[#L246-249] function constructor(): Missing zero address check for
address token_ and beneficiary_

approve() race

The standard ERC20 implementation contains a widely-known racing
condition in its approve function, wherein a spender is able to witness
the token owner broadcast a transaction altering their approval and
quickly sign and broadcast a transaction using transferFrom to move the
current approved amount from the owner’s balance to the spender. If
the spender’s transaction is validated before the owner’s, the spender is
able to spend their entire approval amount twice.

Reference:

https://docs.google.com/document/
d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

https://medium.com/mycrypto/bad-actors-abusing-erc20-approval-
to-steal-your-tokens-c0407b7f7c7c

https://eips.ethereum.org/EIPS/eip-20

2.

3.

Status: Open

Status: Open

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://medium.com/mycrypto/bad-actors-abusing-erc20-approval-to-steal-your-tokens-c0407b7f7c7c
https://eips.ethereum.org/EIPS/eip-20

0506

Informational

Public functions that are never called by the contract should be
declared external to save gas.

1.

2.

Missing Error Messages

[124, 125] Error Messages can be added to the require checks so as to
track down the errors

Status: Open

[291, 292, 293, 302, 303, 304] Use add function from SafeMath library
instead of + operator

Status: Open

Gas Optimization

08

Disclaimer

The audit does not give any warranties on the security of the code. One
audit cannot be considered enough. We always recommend proceeding
with several independent audits and a public bug bounty program to
ensure the security of the code. Besides a security audit, please don’t
consider this report as investment advice.

07

07

Closing Summary

08

Some issues of low severity have been reported during the audit. A high
issue has been reported and is now fixed by the developers.

17

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

