
01

Audit Report
August, 2021

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit 01

02

03

04

10

12

13

Techniques and Methods

Issue Categories

Issues Found – Code Review/Manual Testing

Summary

Automated Testing

Disclaimer

050401

The scope of this audit was to analyze and document the Binamon Z1
smart contract codebase for quality, security, and correctness.

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Scope of Audit

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

0502

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step we have analyzed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.
SmartCheck.

Static Analysis
Static Analysis of Smart Contracts was done to identify contract
vulnerabilities. In this step a series of automated tools are used to test
security of smart contracts.

Code Review / Manual Analysis
Manual Analysis or review of code was done to identify new vulnerability
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analyzed, their logic was checked and compared with
the one described in the whitepaper. Besides, the results of automated
analysis were manually verified.

Gas Consumption
In this step we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed and
possibilities of optimization of code to reduce gas consumption.

0203

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Ganache, Solhint, Mythril, Slither,
SmartCheck.

Low level severity issues

Informational

Medium level severity issues

High severity issues

Issue Categories

Low level severity issues can cause minor impact and or are just warnings
that can remain unfixed for now. It would be better to fix these issues at
some point in the future.

These are severity four issues which indicate an improvement request, a
general question, a cosmetic or documentation error, or a request for
information. There is low-to-no impact.

The issues marked as medium severity usually arise because of errors and
deficiencies in the smart contract code. Issues on this level could potentially
bring problems and they should still be fixed.

A high severity issue or vulnerability means that your smart contract can be
exploited. Issues on this level are critical to the smart contract’s
performance or functionality and we recommend these issues to be fixed
before moving to a live environment.

Every issue in this report has been assigned with a severity level. There
are four levels of severity and each of them has been explained below.

0404

Number of issues per severity

Introduction

During the period of August 04, 2021 to August 07, 2021 - QuillAudits
Team performed a security audit for Binamon Z1 smart contracts.

The code for the audit was taken from the following official link:

Open

Type High

Closed

Acknowledged

Low

0 0

0

1

0

1

00

0

2

0

2

Medium Informational

Note Date Commit hash

Version 1 August
https://bscscan.com/address/0x80E15FE54e9

D155f8366187A6a32BDEF9C2366c4#code

https://bscscan.com/address/0x80E15FE54e9D155f8366187A6a32BDEF9C2366c4#code

0505

1.

Issues Found – Code Review / Manual Testing

High severity issues

Denial of Service in Transactions [Restricted Mode]

Description
The Binamon Team had implemented a modifier to prevent bots and
also to limit the number of transactions that a user can do per minute or
per month. This feature can have a critical impact on the smart contract
and block all the transactions that a user can do. An attacker can exploit
this by calling the function transfer of TransferFrom using the address of
the Victim as a receiver and an owner with numToken equal to 0, the
modifier will be triggered and the address of the victim will be added to
lastTx, when the legit user wants to call the transfer function the
modifier will prevent him. A script can block all the addresses each
minute, thus launching a denial service attack on the contract.

Remediation
The modifier launchRestrict should only be based on the msg.sender to
prevent the caller of the function, not the receiver or the sender.

Status: Acknowledged by the Auditee

 modifier launchRestrict(address sender, address recipient, uint256 amount) {
 if (state == State.Locked) {

require(sender == owner(), "Tokens are locked");
 }
 if (state == State.Restricted) {

require(amount <= maxRestrictionAmount, "BNRG: amount greater than max limit
in restricted mode");

require(lastTx[sender].add(60) <= block.timestamp && lastTx[recipient].add(60)
<= block.timestamp, "BMON: only one tx/min in restricted mode");

lastTx[sender] = block.timestamp;
lastTx[recipient] = block.timestamp;

 }
 if (state == State.Unlocked) {

if (isBlacklisted[recipient]) {
require(lastTx[recipient] + 30 days <= block.timestamp, "BNRG: only one tx/

month in banned mode");
lastTx[recipient] = block.timestamp;

} else if (isBlacklisted[sender]) {
require(lastTx[sender] + 30 days <= block.timestamp, "BNRG: only one tx/

month in banned mode");
lastTx[sender] = block.timestamp;

}
 }
 _;
 }

0506

2. Approve Race

Description
The standard ERC20 implementation contains a widely-known racing
condition in its approve function, wherein a spender is able to witness
the token owner broadcast a transaction altering their approval and
quickly sign and broadcast a transaction using transferFrom to move the
current approved amount from the owner’s balance to the spender. If
the spender’s transaction is validated before the owner’s, the spender
will be able to get both approval amounts of both transactions.

Remediation

Medium severity issues

Low Severity Issues

 function approve(address delegate, uint256 numTokens) public override returns (bool)
{
 allowed[msg.sender][delegate] = numTokens;
 emit Approval(msg.sender, delegate, numTokens);
 return true;
 }

 function approve(address delegate, uint256 _currentValue ,uint256 numTokens) public
override returns (bool) {
 if(_currentValue == allowed[msg.sender][delegate])
 {
 allowed[msg.sender][delegate] = numTokens;
 emit Approval(msg.sender, delegate, numTokens);
 return true;
 }
 else return false;
 }

Status: Acknowledged by the Auditee

 function setStakingContract(address stakingContractAddress_) public onlyOwner {
 stakingContractAddress = stakingContractAddress_;

 function allowBuyingBoosters(address bmonc) public returns (bool) {
 boosterBuyingAllowed[msg.sender] = bmonc;
 return true;
 }

3. Missing Address Validation

0507

4. Usage of BlockimeStamp

Description
Certain functions lack a safety check in the address; the address-type
argument should include a zero-address test; otherwise, the contract's
functionality may become inaccessible, or tokens may be burned in
perpetuity.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Status: Acknowledged by the Auditee

 require(amount <= maxRestrictionAmount, "BNRG: amount greater than max limit in
restricted mode");

require(lastTx[sender].add(60) <= block.timestamp && lastTx[recipient].add(60)
<= block.timestamp, "BMON: only one tx/min in restricted mode");

lastTx[sender] = block.timestamp;
lastTx[recipient] = block.timestamp;

 }
 if (state == State.Unlocked) {

if (isBlacklisted[recipient]) {
require(lastTx[recipient] + 30 days <= block.timestamp, "BNRG: only one tx/

month in banned mode");
lastTx[recipient] = block.timestamp;

} else if (isBlacklisted[sender]) {
require(lastTx[sender] + 30 days <= block.timestamp, "BNRG: only one tx/

month in banned mode");
lastTx[sender] = block.timestamp;

}

 function deliver(address user, uint256 numTokens) public {
 require(msg.sender == stakingContractAddress, "Manual call not allowed");
 balances[user] = balances[user].add(numTokens);
 _totalSupply = _totalSupply.add(numTokens);
 emit Transfer(address(0), user, numTokens);
 }

Description
Block.timestamp is used in the contract. The variable block is a set of
variables. The timestamp does not always reflect the current time and
may be inaccurate. The value of a block can be influenced by miners.
Maximal Extractable Value attacks require a timestamp of up to 900
seconds. There is no guarantee that the value is right; all that is
guaranteed is that it is higher than the timestamp of the previous block.

0508

.

Status: Acknowledged by the Auditee

Informational

Description
Contracts should be deployed with the same compiler version and flags
that they have been tested with thoroughly. Locking the pragma helps
to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Remediation
Lock the pragma version and also consider known bugs for the compiler
version that is chosen.

pragma solidity >=0.7.0 <0.9.0;

5. Floating Pragma

Remediation
You can use an Oracle to get the exact time or verify if a delay of 900
seconds won’t destroy the logic of the staking contract.

Status: Acknowledged by the Auditee

Description
The following public functions that are never called by the contract
should be declared external to save gas:

name()
symbol()
decimals()
totalSupply()
balanceOf(address)
transfer(address,uint256)
approve(address,uint256)
allowance(address,address)
transferFrom(address,address,uint256)
boosterBuyingAllowance(address)

6. Public function that could be declared external

0509

Remediation
Use the external attribute for functions that are not called from the
contract.

allowBuyingBoosters(address)
setStakingContract(address)
deliver(address,uint256)
mint(uint256)
burn(uint256)
setBotProtection(bool)
setRestrictionAmount(uint256)
blacklistAccount(address,bool)

Status: Acknowledged by the Auditee

10

Automated Testing

Slither

11

Results
No major issues were found. Some false positive errors were reported by
the tools. All the other issues have been categorized above according to
their level of severity.

12

Closing Summary

Overall, smart contracts are very well written and adhere to guidelines.

No instances of Integer Overflow and Underflow vulnerabilities or Back-
Door Entry were found in the contract, but the denial of service can impact
the logic of the contract.

Several issues have been found in the Audit; it is highly recommended to
fix them.

13

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an
endorsement of the Binamon Z1 Contract. This audit does not provide a
security or correctness guarantee of the audited smart contracts. The
statements made in this document should not be interpreted as investment
or legal advice, nor should its authors be held accountable for decisions
made based on them. Securing smart contracts is a multistep process. One
audit cannot be considered enough. We recommend that the Binamon Z1
Team put in place a bug bounty program to encourage further analysis of
the smart contract by other third parties.

17

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

